目錄

壹	、 個人簡歷	1
漬	、自傳	2
	課堂專案	2
	競賽專案	3
參	、讀書計畫 	4
	報考動機	4
	學習計畫	4
	研究論文計畫時程	5
	研究題目方向	5
附	錄	
	專題研究摘要	6
	歷年成績單/名次	9
	獲獎與競賽證明	9

壹、個人簡歷

姓名	姓名						
		鼎鉛 左					
學歷 	長庚大學 電	長庚大學 電子工程系 2021-2025					
系排名	第二名 (2.3	第二名 (2.3%)					
感興趣研究領 域	數位積體電路設計、深度學習、LLM Agents						
	學期	大一上	大一下	大二上	大二下	大三上	大三下
	排名	4	1	2	2	3	2
歷年成績	平均分 數	88.7	92.1	92.74	89.74	90.35	89.5
	總平均 分			90.5	53		
			專題研究	*			
主題		低功耗ヿ	ransformer f	編碼器應用於	單導程心肌	梗塞偵測	
本研究提出了一種低功耗的 Transformer 編碼器, 應用於單導程心肌梗塞的偵測。該編碼器包括嵌入層、位置編碼、單頭注意力機制、前饋神經網路及兩層全連接層, 具備簡單且高效的自注意力機制, 能夠在低頻率下進行高效的心電圖分析。心電圖資料採樣率簡介 為 40Hz, 晶片操作頻率為 27.3 kHz。系統採用台積電 0.18 微米製程技術, 在 1.8V 下功耗僅 76.6 微瓦, 邏輯閘數量為 392k, 偵測準確率達 90.6%, 延遲時間為 1 秒。為克服自注意力機制的運算瓶頸, 研究中引入了脈動陣列技術以提升效能, 並通過兩種方法降低晶片功耗, 總功耗相較於初始設計下降了 11.34%。					層, 具備簡 過資料採樣率 , 在 1.8V 下 3 1 秒。為克		
競賽							
2024 盛群盃 MCU 創意大賽 入圍決賽							
2023 AMD PYNQ 人工智慧終端節點運算創意競賽 入圍決賽							
獲獎榮譽							
長庚大學 電子工程系 書卷獎 獲獎三次							
長庚大學 工學院 榮譽學生							
長庚大學 榮譽學程 銀質獎							

貳、自傳

我是蕭銘宏,從小學時接觸到 iPhone 3GS,激發了我對電子產品的好奇心,並決定將電子工程(EE)作為未來的進修方向。從學習底層的電子電路,到深入研究人工智慧,最後實際動手設計數位 IC,我愈加確信電子工程是我天賦與熱情所在的研究領域,並決定攻讀研究所,繼續學習以獲得更多的研究靈感。

課堂專案

專題研究(個人): 低功耗 Transformer 編碼器應用於單導程心肌梗塞偵測

本研究提出了一種低功耗的 Transformer 編碼器, 應用於單導程心肌梗塞的偵測。該編碼器包含嵌入層、位置編碼、單頭注意力機制、前饋神經網路及兩層全連接層, 具備簡單且高效的自注意力機制, 能夠在低頻率下進行高效的心電圖分析。心電圖資料採樣率為 40Hz, 晶片操作頻率為 27.3 kHz。系統採用台積電 0.18 微米製程技術, 在 1.8V 下功耗僅 76.6 微瓦, 邏輯閘數量為 392k, 偵測準確率達 90.6%, 延遲時間為 1 秒。為克服自注意力機制的運算瓶頸, 研究中引入脈動陣列技術以提升效能, 並通過兩種方法降低晶片功耗, 總功耗相較於初始設計下降了 11.34%。

這項研究帶給我豐富的學習經驗,並提升了我閱讀文獻和自主學習技術的能力。我透過網路課程,補足了專業知識的不足。例如,李宏毅老師的機器學習課程為我奠定了神經網路的基礎知識,而張添短老師的數位電路課程讓我更深入了解複雜的數位電路設計。這些課程使我掌握了如何使用SystemVerilog 進行高抽象層次的電路設計、如何進行靜態時序分析,以及如何解決時序不滿足的問題,例如在輸入和輸出端添加 DFF 改善時序表現。

然而,我也意識到自己在數位電路設計流程及優化技術上的不足。為了彌補這些缺陷,我上網學習了賴瑾老師的 Advanced SoC 課程,進一步學習更複雜的時序分析、低功耗設計技巧,以及實體設計背後的 know-how。儘管時間限制導致未能完成晶片下線,但這次專題研究讓我深刻理解了數位 IC 設計的技術瓶頸以及前端演算法知識的不足,這也激發了我繼續深造的動機。

在這段學習過程中,我逐漸培養了查閱文獻和閱讀官方技術手冊的習慣。無論是學習機器學習還是使用 EDA 工具,我經常需要閱讀大量技術文件以深入理解細節。使用 Synopsys 工具時,我學會了如何查閱操作手冊以總結要點和解決問題。雖然技術部落格或 Stack Overflow 能夠快速解決具體問題,但我發現閱讀官方手冊雖然耗時較多,卻能幫助我更全面理解整個系統的運作。

人工智慧:期末專題(個人):AlphaZero-Reversi

這個黑白棋 AI 系統基於 AlphaZero 演算法, 使用 Python 實作自我對弈功能。系統採用殘差塔卷積神經網路結構, 搭配 Mish 激活函數進行棋局狀態預測, 並結合蒙特卡羅樹搜尋(MCTS)平衡探索與利用, 生成最佳落子策略。自我對弈產生的資料用於強化學習, 並利用 PyTorch 的多進程技術優化訓練與評估, 同時使用 pygame 開發圖形用戶介面。透過這個專案, 我加深了對強化學習演算法的理解, 並為未來在人工智慧與遊戲理論的進一步學習打下基礎。

數值方法:期末專題(兩人):數位通訊模擬-文字傳輸

以 MATLAB 實作數位通訊系統模擬,模擬整個通訊流程。發送端首先使用霍夫曼編碼對文字訊息進行壓縮,然後應用卷積編碼增加錯誤檢測和糾正能力。編碼後的訊息分別使用 BASK、BPSK、QPSK 三種數位調變技術進行調變。通過加性高斯白雜訊模擬實際通訊信道。接收端執行相應的解調過程,再使用維特比演算法進行信道解碼,最後通過霍夫曼解碼還原原始文字訊息。這次模擬展示並比較了不同調變技術在數位通訊系統中的表現。

競賽專案

2024 盛群盃 MCU 創意大賽(四人): 心電之眼

《心電之眼》是一款專為心電圖(ECG)身份識別和心肌梗塞檢測設計的穿戴式設備。系統使用 HOLTEK HT32F52352 單晶片作為核心,結合 AD8232 心電感測器進行心電圖訊號的預處理,並使 用離散小波轉換(DWT)提取特徵值。系統應用 Transformer 編碼器架構,有效識別使用者身份,準 確率超過 95%,並實現心肌梗塞的檢測,準確率超過 90%。此設備具備輕巧、低功耗設計,能長時間 佩戴,適用於個人健康管理、醫療監測及身份驗證等領域,並提供即時資料顯示及警報功能。

2023 AMD PYNQ 人工智慧終端節點運算創意競賽(兩人): 讓我瞧瞧正不正

《讓我瞧瞧正不正》是一款基於 PYNQ 和 MoveNet 技術的坐姿監測系統, 針對現代人長時間久坐、坐姿不正的問題進行即時監控與提醒。系統利用視訊鏡頭抓取人體關節座標, 並通過全連接神經網路對坐姿進行分類, 如頸部前伸、翹腿、手肘靠桌等不良姿勢, 提供警告和姿勢矯正建議。該系統旨在幫助使用者保持正確坐姿, 減少肌肉疲勞及潛在健康問題, 具備高效、即時提醒和低功耗等特點, 適合日常使用。

參、讀書計畫

報考動機

大學時期培養的自主學習態度以及研究精神,使我在電子工程各領域皆奠定一定的理論與實作基礎。經過長時間的研究與學習,我對於人工智慧、積體電路及半導體領域發展具有強烈的興趣,同時也意識到自己還需要更多的學習與進修,於是希望於研究所繼續朝相關領域鑽研精進。

學習計畫

時段	計畫排程
	持續學習數位積體電路、數位訊號處理、機器學習、計算機結構等理論知識
 碩零	閱 讀微電子領域與人工智慧之國際頂級會議 、期刊論文,儲備未來研究知識
似令	規劃研究所修課計畫, 會晤與確定指導教授
	積極參與研討會,擴充人脈與了解科技發展趨勢
	修習高等數位訊號處理、積體電路設計實驗、人工智慧等相關領域學科
碩一上	學習如何將人工智慧等技術運用於不同領域之課程
	閱讀論文並與指導教授討論研究方向
	決定研究題目, 查找並閱讀相關文獻
碩一下	修習研究相關課程並完成畢業學分
	參與實驗室計畫, 累積實務經驗
	專注於論文研究與撰寫
碩二上	完成碩士論文之初稿
	整理初步研究成果並投稿至國內論壇與研討會
	完善研究成果與碩士論文
碩二下	積極投稿研究相關領域之國際期刊或 研討會
	規劃畢業後發展, 有意願繼續攻讀博士

研究論文計畫時程

	入學前	碩一上	碩一下	碩二上	碩二下
與指導教授會談,閱讀研究領域相關著作					
修習研究方向相關之課程, 擴充知識					
決定論文主題並著手研究					
撰寫碩士論文					
完成碩士論文並投稿相關國際期刊					

研究題目方向

我希望能深入了解更多有關低功耗晶片、深度學習等技術的細節,因為這些技術在當前的電子 設備和人工智能應用中扮演著至關重要的角色。隨著物聯網(IoT)、穿戴式設備、智能家居等市場的 快速增長,對於低功耗、高效能的解決方案需求變得愈加迫切。

記憶體內運算

傳統計算架構中,頻繁的資料傳輸在處理單元與記憶體間造成高能耗與延遲,而記憶體內運算通過將計算與資料儲存結合,有效降低數據搬移需求,特別適合資源受限裝置。將深度學習模型的權重儲存在 RRAM 單元,這些單元可進行矩陣運算。相較於 CMOS 技術,RRAM 不僅能減少漏電與功耗,還克服了高階製程挑戰,具備更小面積、更高擴展性與密度的優勢。

深度學習應用

智能眼鏡如 Apple Vision 逐漸成為行動裝置的趨勢,利用擴增實境提升使用者體驗。然而,眼動追蹤、面部識別與手勢控制等功能帶來的高功耗和資源消耗,成為續航和用戶體驗的挑戰。研究深度學習在此類裝置上的應用,重點在於開發高效架構和算法,透過剪枝、量化與知識蒸餾等技術減少計算量與記憶體使用,同時保持精度。分散式學習和聯邦學習則能降低資料傳輸和運算延遲,提升即時性。一

MIMO 系統與訊號處理

空間多工多輸入多輸出(MIMO)技術對提升通訊系統傳輸容量至關重要。為減少天線干擾並準確檢測傳輸符號,接收端需處理 MIMO 通道矩陣並檢測星座圖符號。設計硬體優化的 MIMO 前處理和信號處理算法及架構,並引入自適應信道估計和降維算法,以降低計算複雜度,動態調整處理方式。符號檢測將採用基於深度學習的算法,提升在高噪聲環境下的準確性,實現資源受限設備中的高效能與低功耗,適用於 5G 及未來通訊技術。

專題研究摘要

低功耗 Transformer 編碼器應用於單導程心肌梗塞偵測

指導教授:陳元賀 教授

組員姓名:蕭銘宏

研究期間: 2024 年 02 月 01 日至 2024 年 09 月 01 日止, 共 7 個月

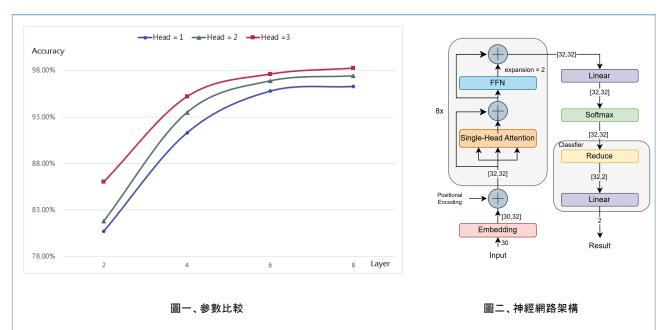
Abstract

本研究提出了一種低功耗的 Transformer 編碼器, 應用於單導程心肌梗塞的偵測。該編碼器包括嵌入層、位置編碼、單頭注意力機制、前饋神經網路及兩層全連接層, 具備簡單且高效的自注意力機制, 能夠在低頻率下進行高效的心電圖分析。心電圖資料採樣率為 40Hz, 晶片操作頻率為 27.3 kHz。系統採用台積電 0.18 微米製程技術, 在 1.8V 下功耗僅 76.6 微瓦, 邏輯閘數量為 392k, 偵測準確率達 90.6%, 延遲時間為 1 秒。

為克服自注意力機制的運算瓶頸,研究中引入了脈動陣列技術以提升效能,並通過兩種方法降低晶 片功耗,總功耗相較於初始設計下降了 11.34%。

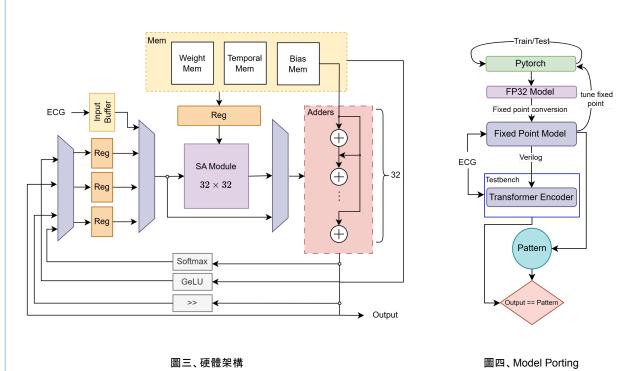
1. Background and Motivation

心血管疾病是全球主要致死原因之一,涵蓋了心臟與血管的各種疾病。這些疾病的症狀往往間歇性發作,隨時間消失或復發。醫師建議使用移動心電圖機進行心律的持續監測,以便診斷潛在的健康問題。

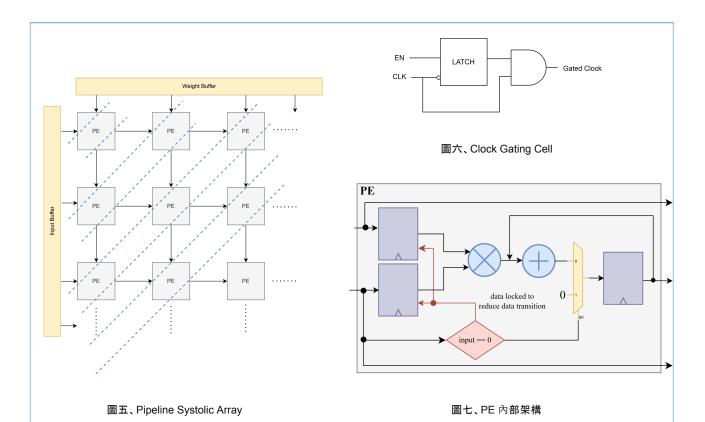

2. Method

2.1 Data Augmentation

本研究使用 PTB Diagnostics 數據集,選取心肌梗塞(MI)及健康的第二導程(Lead II)資料。每個 R 峰的窗口大小為 1.125T, 並對每位患者應用相同方法找出最大窗口, 最終篩選出適合訓練及驗證的資料。數據被正規化至 [0,1] 區間, 並降採樣至 40Hz, 隨機對數據進行水平移動及添加噪聲,以增強模型的泛化能力。

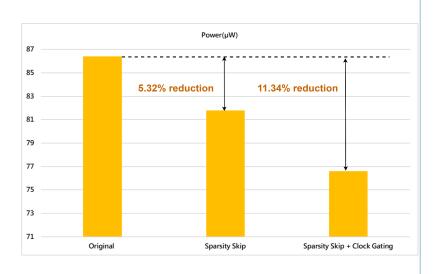

2.2 Transformer Encoder

數據集按 80/10/10 分為訓練集、測試集和驗證集, 對不同的 Expansion 和 Layer 進行測試。考量到延遲與功耗, 最終選擇 Head=1, Layer=6 的配置。網路訓練以 FP32 進行, 並量化為 7 位元小數和 3 位元整數。

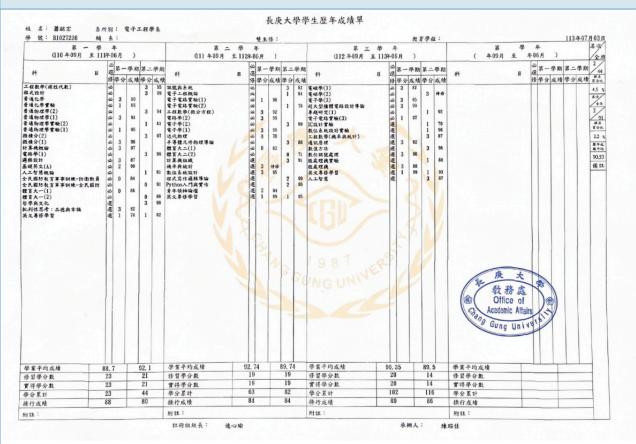

2.3 Hardware Implementation

為實現即時偵測與低功耗, 晶片採用了 32×32 脈動陣列, 並重複使用加法器與乘法器進行全連接層的計算。三個 1024×10 bits 的記憶體分別儲存權重、偏置和暫存值, 硬體架構如圖三所示。

2.4 Low Power Design


在 GeLU 運算中,由於會產生稀疏矩陣,因此使用比較器檢查 PE 的輸入值是否為 0, 若為 0則鎖定暫存器以減少資料翻轉,並直接輸出 0。另採用了 Clock Gating 技術,在進行 Embedding 和 Classifier 計算時關閉未使用的 PE, 以減少時鐘翻轉, 從而進一步降低功耗。

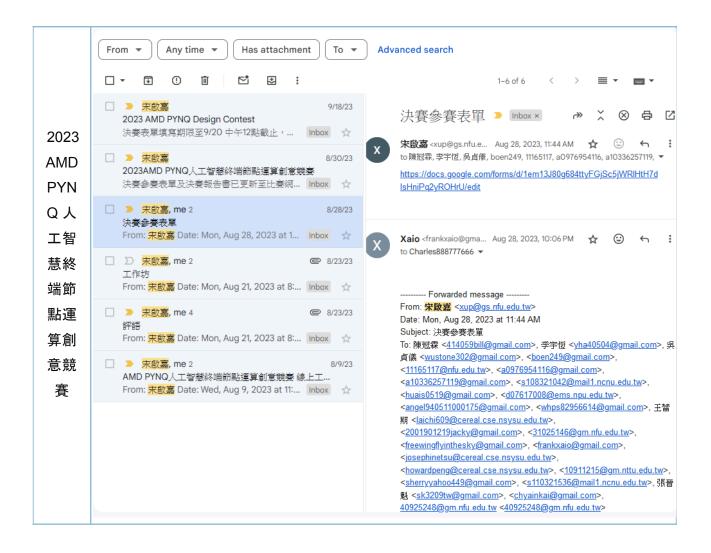
3. Result


原始功耗為 86.4 微瓦, 通過鎖定脈動陣列中的 0 值暫存器, 功耗降低 5.32%, 達到 81.8 微瓦, 再加上 Clock Gating 技術, 功耗進一步降低 11.34%, 最終功耗為 76.6 微瓦。系統經 Gate Level Simulation 驗證成功。

Process	TSMC 0.18µm	
Supply Voltage	1.8V	
Gate Count	392K	
Frequency	27.3KHZ	
Accuracy	90.2%	
Power	76.6 μW	
Latency	0.96 sec	

圖八、功率比較

歷年成績單/名次



獲獎與競賽證明

	B-16	黃豆生長日記	長庚大學
	B-17	育兒型互動機器人	南華大學
	B-18	心電之眼	長庚大學
	B-19	Pu Pu Bike	南臺科技大學
	B-20	車外音專注設備	國立虎尾科技大學
	B-21	智慧汽車	國立勤益科技大學
	B-22	GluID	南臺科技大學
2024	B-23	智慧 IC 功能檢測	國立聯合大學
盛群	B-25	Anti-mosquiso Shield	南臺科技大學
盃	B-26	消滅鴿集拉	國立雲林科技大學
MCU 創	B-29	智能導盲定位系統	國立臺灣師範大學
意	B-30	智慧節能導覽機器人	中原大學
大賽	B-31	多媒體結合腳本控制之個人電腦控制 器	國立高雄科技大學
食	B-32	全向輪智慧人體辨識陪伴機器人	國立臺灣師範大學
	B-33	HPCRS- 高精度複合式辨識系統	國立虎尾科技大學
	B-34	綠能水塔	南臺科技大學
	B-35	沼渣沼液智慧監控與銷售	修平科技大學
	B-36	永續智工坊	修平科技大學
	B-37	外籍看護病床緊急語音呼叫通報系統	國立高雄科技大學

